• Jurassic World Review

    It's here!
    It’s here!

    I figured if I was going to do a Jurassic World-related post on Stegosaurus I might as well follow it up with a review for the film. I grossly underestimated the draw of dinosaurs to the cinema. Despite 22 years of Jurassic Park, Walking with Dinosaurs (BBC version, not the Disney thing), and so on, people never seem to be burnt out on dinosaurs. That’s good news for paleontology (yay!), and also for movies seeing as how Jurassic World just raked in a record-breaking $208.8 million domestic in its opening weekend.

    So what did I think?  In short: I liked it and found it to be a worthy successor to the franchise.

    If you’d like the longer, spoiler-ridden version click on the jump.
    Continue reading  Post ID 1374


  • Jurassic World and the case of the droopy-tailed Stegosaurus

    As I write this the US premiere of Jurassic World is just around the corner. I had gone back and forth regarding this post given that we currently know very little about the film and as such the interpretations written about here and elsewhere may well be pointless by the time the film premieres.

    Ultimately I decided to post this anyway since the overall thrust of the article should remain true regardless of how the film pans out.


    Now there has been a lot of buzz around Jurassic World since it was first announced last year. The buzz has been mixed, but fairly positive. I suspect this was, in part, because everyone was happy to hear that the godawful military dinosaur idea was shelved in favour of a more “traditional” JP franchise storyline. Nonetheless the movie has still drawn its fair share of detractors, including myself. Most of the people who are unhappy with the film are either paleontologists, or hardcore dinophiles. Many of the problems leveled at the film have to do with the portrayal of the extinct animals. The problems are actually myriad ranging from pterosaurs capable of picking up humans using grasping feet, mosasaurs that are twice the size of blue whales, sauropods covered in elephant skin rather than scales (a problem not unique to Jurassic World), everything about Velociraptor, and of course Indominus rex.  My biggest beef with the film is that the dinosaurs are not being shown as dinosaurs so much as monsters. However, after The Lost World: Jurassic Park came out it became pretty evident that Spielberg’s original vision of portraying dinosaurs as animals had been shelved in favour of the more entertainment-friendly movie monster approach. However, for what seems like a majority of the detractors, the biggest gripe with the film has to do with a lack of  feathers on pretty much all the dinosaurs. This seems to be a common theme these days with a particularly vocal group of dinophiles and paleontologists strongly pushing for the feathering of every dinosaur in sight and insisting that all media that portrays scaly (erroneously called: “naked”) dinosaurs is inaccurate. Never mind the fact that a feathered, pack-hunting, 2 meter tall Velociraptor mongoliensis is still every bit as inaccurate as a scaly one.

    Anyway, I digress. Dealing with the overwhelming amount of internet drama surrounding Jurassic World (and the media depiction of dinosaurs in general) is a topic for another day. My reason for writing this post is centered around one particular criticism that popped up a few weeks ago.

    Continue reading  Post ID 1374


  • Out of stasis once more

    Weyland-Yutani stasis pod concept art.
    Weyland-Yutani stasis pod concept art.

    Visitors to the site may have noticed that it has been stuck in archive mode for the past however many months. This only recently came to my attention when I had noticed a lack of update nags from WordPress. Further investigation revealed that comments were no longer going through, nor were new posts. Given the global lockdown of the site I suspected that I was either hacked (again!) or that there was a database issue. A quick scan from Sucuri eliminated the first option (or at least made it less likely), which led me to check the database.

     

    Lo and behold I found that the Reptipage database is currently holding at  approximately 150 MB. Unfortunately,  my current webhost (1and1.com) had a hard limit of 100 MB for databases at my current hosting level. I say “had” because they have since bumped database sizes up to 1GB. The problem was that any old databases currently in use were still subjected to this hard limit. I was 50MB over the hard limit so the MYSQL database was locked down. Hence the lack of updates, comments, posts, etc. I would have caught this sooner, but the demands of my current job have caused the site to get backburnered.

    The site is now on a new database that has more legroom to it and I’m now aware of this looming problem (the DB isn’t 1GB now, but it will be in the future). I’m looking into spreading the Reptipage across a few databases using the hyperDB plugin. We’ll see where it goes.

     

    Also, there has been a bit of a lull in my current workflow that has freed up some time that I intend to devote to writing again. Between T. rex autopsy and Jurassic World (both coming out in a few weeks) there is no shortage of excitement, controversy and overall butthurt on the internet that I can talk about. There has also been a bevy of cool new things regarding extant reptiles which I intend to get back to covering.

    So that is the current status of things. I have some posts in the hopper that should be coming out shortly. I apologize for having the site in archive mode for so long.

    Time to get back to business.

    ~ Jura

     


  • Site update

    I finally got around to making the site more social-media friendly. You should now have the ability to easily share posts on all the major social media services.

    I also fixed a bug in the CSS that kept the font colour for the author fill-in fields black. My apologies to everyone who has been commenting in spite of the problem. I was not aware of it until recently. I also wasn’t aware that you could not subscribe to comments, so I fixed that problem too. You can now subscribe to posts with or without commenting. You can also receive notifications for just replies to your comments if that is what you prefer.

    Hopefully the site is a bit more user friendly now. Let me know if anything else is broken.

    [Update: I also updated the theme from (which I had not changed since 2007). The old theme would not allow for threaded commenting, which can be extremely frustrating when there are extensive comments. The new theme allows for this and a host of other things too. Now I just need to fix about a dozen small little bugs and things should be good.]

    ~Jura


  • New Siberian ornithischian and the (over) feathering of dinosaurs…again.

    Artist's impression of the fleshed out Kulinda specimen. Image by Andrey Atuchin
    Artist’s impression of the fleshed out Kulinda specimen. Image by Andrey Atuchin

    Well, as is often the case, this post is a bit late to the party, despite starting early. Unless you have been living under a rock (or don’t care that much about dinosaurs), you have probably heard about the discovery of a small ornithischian from Siberia, Russia that apparently sports feathers as well as scales on its body. It’s a crazy half-and-half animal that has given many the green light for making all dinosaurs feathery.

    As is often the case with these studies I am writing to urge caution against taking things too far, if just so there is some voice of dissent out there in an internet fully of trigger-happy feather reconstructions.

    Let’s start from the beginning.

    Continue reading  Post ID 1374


  • Tall spines and sailed backs: A survey of sailbacks across time

    One of the quintessential depictions of prehistoric times is that of an ancient, often volcano ridden, landscape full of animals bearing large showy sails of skin stretched over their backs. Sailbacked animals are rather rare in our modern day and age, but back in the Mesozoic and Paleozoic there were sails a plenty.

    By far the most popular sailbacked taxa of all time would be the pelycosaurs in the genus Dimetrodon. These were some of the largest predators of the Permian (up to 4.6 meters [15 feet] long in the largest species). Dimetrodon lived alongside other sailbacked pelycosaurs including the genus Edaphosaurus. These were large herbivores (~3.5 m [11.5 ft] in length) that evolved their sails independently from Dimetrodon. The Permian saw many species of sphenacodontids and edaphosaurids, many of which sported these showy sails (Fig. 1. [1–8]).

    SailbackRoster
    Fig. 1. A brief survey of the sailbacks of prehistory. Permian sailbacks, the sphenacodontids: Dimetrodon(1), Sphenacodon(2), Secodontosaurus(3), and Ctenospondylus(4). The edaphosaurids: Edaphosaurus(5), Ianthasaurus (6), Echinerpeton(7), Lupeosaurus(8). The temnospondyl: Platyhystrix(9). Triassic sailbacks, the rauisuchians: Arizonasaurus(10), Ctenosauriscus(11), Lotosaurus(12), and Xilousuchus(13). Cretaceous sailbacks, the theropods: Spinosaurus(14), Suchomimus (15), Acrocanthosaurus (16), and Concavenator (17). The ornithopod: Ouranosaurus (18), and the sauropod: Amargasaurus (19). Image credits: Dmitry Bogdanov (1–2, 8, 14–15), Arthur Weaseley (5, 19), Smokeybjb (7), Nobu Tamura (3–4, 6, 8–9, 10–12), Sterling Nesbitt (13), Laurel D. Austin (16), Steven O’Connor (17), Sergio Pérez (18).

    However sails were hardly a pelycosaur novelty. The contemporaneous temnospondyl Platyhystrix rugosus (Fig. 1 [9]) also adorned a showy sail.

    Fast forward 47 million years into the Triassic and we find the rauisuchians Arizonasaurus babbitti, Lotosaurus adentus, Xilousuchus sapingensis, and Ctenosauriscus koeneni , all bearing showing sails on their backs (Fig. 1 [10–13]). Much like in the Permian, many of these taxa were contemporaneous and, while related, many likely evolved their sails separately from one another.

    There are currently no fossils of sailbacked tetrapods in the Jurassic (as far as I know. Feel free to chime in in the comments if you know of some examples). However the Early Cretaceous gave  us a preponderance of sailbacked dinosaurs (Fig. 1 [14–19]) including the cinematically famous theropod Spinosaurus aegyptiacus, the contemporaneous hadrosaur Ouranosaurus nigeriensis, the gharial-mimic Suchomimus tenerensis, the potentially dual sailed sauropod Amargasaurus cazaui, as well as the allosauroids Acrocanthosaurus atokensis, and Concavenator corcovatus. Lastly, the discovery announced last year (and just now coming to light in the news) of better remains for the giant ornithomimid Deinocheirus mirificus have revealed that it too may have sported a small sail along its back.

    Once again we find a group of related, largely contemporaneous, animals, most of which probably evolved their sails separately.

    Such a huge collection of sailbacked animals all living around the same time (and sometimes the same place) has begged for some type of functional explanation. The usual go-to for large, showy surfaces like these or the plates of Stegosaurus has been thermoregulation. The thinking being that blood pumped through a large surface area like this, when exposed to the sun, has the ability to warm up faster than other areas of the body. Conversely when the sail is placed crosswise to a wind stream, or parallel to the orientation of the sun, heat will radiate out into the environment faster than other areas of the body. That most sailbacked dinosaurs were “localized” to equatorial areas, coupled with the large sizes of all the taxa (1-10 tonnes depending in species) has favoured a cooling mechanism function for dinosaur sails. Whereas a heating function has been presumed to be the primary function for sails in Dimetrodon and Edaphosaurus. No real function has been ascribed to the sails in rauisuchians or Platyhystrix, though this is probably due to a lack of knowledge/interest in these groups.

    Alternate functions proposed for these sails have included a self-righting mechanism for swimming, sexual signaling and other presumed display functions. In certain cases, namely Spinosaurus aegyptiacus and Ouranosaurus nigeriensis, it has even been argued that the enlarged spines did not support a sail, but rather were supports for a large, fatty hump akin to that of camels or bison (Bailey 1996, 1997).

    Given the wealth of hypotheses for potential sail functions it would be beneficial to first understand what extant sailbacked taxa use their sails for. Unfortunately—though unsurprisingly—there are few if any scientific studies on sail use in extant sailbacked animals. This has lead to the apparent assumption that there are no extant vertebrates with sailbacks.

    There are, in fact, quite a few sailbacked animals alive today. These include various fish, amphibians and even reptile species. Learning what these taxa use their sails for may offer us a glimpse at what extinct animals were doing with their sails.
    Continue reading  Post ID 1374


  • It’s over 9,000!

    Last year was a busy year for me. As such the site had to go into dormancy yet again. This year doesn’t look to be any less hectic, but I couldn’t bear to have the site continue to stagnate. So in an attempt to jump-start things again I am going to try and push out some smaller updates.

    Which brings us to our topic.

    The Reptile-Database recently released the current known/generally accepted species count for reptiles. It is now at a whopping 9,952 species! For comparison, when I was growing up the standard species count for reptiles hovered around 6500–6700 species. In fact one can still probably find this widely cited figure in books today. Even when I started the Reptipage some 16 years ago, the total species count was approximately 7,500 species. So in the span of those 16 years, our knowledge of extant reptile diversity has grown by 33%. That’s pretty impressive. Especially when compared to other amniotes. For instance birds are routinely cited as having 10,000 species. The most recent species count for Aves is: 10,530 (IOC World Bird List), an increase of just 5.3%. Mammals were cited as having 5000 species when I was growing up. The most recent (2008) count I could find shows that this class now contains 5,488 species (IUCN Red List); an increase of only 9.8%.

    Part of the reason for the larger spike in reptile species counts vs. mammals and birds is due to a new interest in reptiles themselves. Much of the history of Reptilia is one of revulsion, lumping, and overall wastebinning. However, now with the rise of herpetoculture and the acknowlegement that reptiles represent more than just a “stepping-stone” towards mammals and birds, herpetology has seen a bit of a renaissance in taxonomy. Another reason for this spike in species counts for reptiles can be attributed to the use of molecular techniques to ascertain differences in populations, along with better morphological data (such as those used to help determine that Crocodylus suchus was a real species and not just a variant of the C. niloticus) as well as better ecological data. This spike in species count has come about largely through the elevation of subspecies rather than the discovery of new species (though that is still happening). Herpetology has had a long history of lumping taxa that seem similar enough. This reluctance to split populations into distinct species rather than populations variations had artificially limited the actual species counts. Along with the elevation of subspecies to full species, there has also been a trend to elevate many subgenera to full genus status. This move is somewhat more controversial as the question always pops up of what the ever moving criteria for a genus are. Of course the criteria for species are hardly set in stone either. Ultimately taxonomy is a largely arbitrary affair of biological bookkeeping. Despite this, the need to have these criteria is paramount. The human brain doesn’t work well without categories, even if they are largely self-imposed ones. The appeal of splitting up Reptilia like this is that it reflects a changing attitude about reptiles in general. Though it has been long known that reptiles outnumber mammals, there always seems to be an undercurrent of “but they’re all just the same lizard.” A view that reptiles may be speciose, but are still limited in their body shapes compared to mammals and birds, still pervades today. Hence one reason why there are 29 orders of mammals, some 23 orders of birds, but only 4 orders of reptiles. A move to upgrade subspecies to species and subgenera to genera adds greatly to dispelling the myth that reptiles are the forgettable “intermediate forms” on the tree of life.

    Example of the different “genericometers” of taxonomists. Top left–right: Different members of the Anolis genus: A. proboscis and A. sagrei. Bottom left–right: Different genera of wild cats: Leopardus pardalis and Leptailurus serval. Anolis photos from: Lucas Bustamante and lanare (wikipedia). Serval photo from Giuseppe Mazza. Ocelot photos is unattributed but widely found on the internet

    Regardless of these higher order relationships it looks like Reptilia will officially comprise over 10,000 species by the end of the year [Note: See the comments].

    That is pretty awesome.

    ~Jura


  • “Feathers” on the big, “feathers” on the small, but “feathers” for dinosaurs one and all?

     

    Yutyrannus artwork by Brian Choo. Sciurumimus artwork by Arkady Rose

    This year has seen the discovery of two big deal dinosaur specimens. At least they are a big deal in regards to dinosaur integument and, possibly, metabolism.

    First off from a few months ago we had the announcement the theropod Yutyrannus hauli, the “beautiful feathered tyrant.”

    Xu, X., Kebai, W., Ke, Z., Qingyu, M., Lida, X., Sullivan, C., Dongyu, H., Shuqing, C., Shuo, W. 2012. A Gigantic Feathered Dinosaur from the Lower Cretaceous of China. Nature. Vol.484:92-95

    This was not just a single fossil, but a collection of three fossils (one might be tempted to call it a family group, but that would only be speculation). As with all other dinosaur fossils that have been found to have filamentous integument, these guys come from Liaoning, China. They are suspected to have come from the Jehol Group in the Yixian formation. I say suspected because the complete three specimen set was a purchase from a fossil dealer, an all too common occurrence for Chinese fossils. As such the provenance information is unknown. A lot of Chinese fossil dealers don’t like to give away the location of their find due to the potential loss of other profitable specimens. This current trend in China is a good example of what happens when capitalism comes into play with fossil collecting (something that the U.S. has been mostly, but not entirely, able to avoid). So it is currently uncertain whether these fossils are from the Yixian. However given that all the others guys are too it is probably a good bet. Given the sketchy nature in which many Yixian fossils are collected, coupled with the possibly large consequences of the find, one should naturally be skeptical of the fossil. Had it been one individual on multiple slabs I would question its validity as a real thing. However since Y.huali is known from three individuals, and the filaments seem to follow a consistent pattern around the body (compare that to the helter-skelter nature of Tianyulong‘s preservation), forgery seems unlikely. These guys are probably the real deal. This has some potentially far reaching consequences to interpretations of Late Cretaceous coelurosaurs and the Jehol Biota itself (more on this in a bit).

    The second announcement came just a few weeks ago. This was the discovery of a potentially new, miniscule theropod from Bavaria Germany.

    Rauhut, O.W.M., Foth, C., Tischlinger, H., Norell, M.A. 2012. Exceptionally Preserved Juvenile Megalosauroid Theropod Dinosaur with Filamentous Integument from the Late Jurassic of Germany. PNAS Early Edition:1203238109v1-201203238.

    The specimen is exceptionally well preserved. So well preserved in fact that it actually looks like a plastic toy. While this degree of preservation warrants importance all its own, the main interest behind this new guy—dubbed: Sciurumimus albersdoerferi (Albersdörfer’s squirrel mimic)—is the apparent presence of filamentous integument on the body coupled with its apparent placement among much more basal theropods. This discovery has far reaching consequences for theropod integument interpretations. Note: As with Y.hauli, Sciurumimus albersdoerferi was also purchased from a private collector. I don’t suspect forgery here either as this was in Germany, where fossil dealing is neither a big problem nor a lucrative business. The exceptional detail on the specimen would also require a substantial amount of theropod knowledge to pull off. Anyone having that amount of knowledge is more likely to be a real paleontologist than a get rich quick forger.

    Continue reading  Post ID 1374


  • Back up and running

    This pretty much says it all

    As folks earlier this week might have noticed the site was blacklisted by Google. It turned out some hacker’s bot had infiltrated my WordPress account and inserted a bunch of nasty redirects to malware sites.

    Getting hacked at any time is shitty, but finding the free time to deal with this was problematic. I have spent many late nights (leading to early mornings) this past week trying to fix things. The hardest part wound up being the frigging permalinks. On the bright side the site is back in working order. This was a sobering reminder for me to take better care of my site, lest some malware bot look at it as abandoned property. Real life work has kept me distracted from the site, reducing its output considerably. I intend to fix this soon as I have a few posts simmering and almost ready for prime time. I intend to keep the Reptipage up and running for as long as possible. That includes keeping it updated with new content.

    Sorry for the delay folks. We can now return to our regularly scheduled blogging.

    ~Jura


  • Bad-ass shield crocs, or: Another weird Mesozoic crocodyliform

    Aegisuchus witmeri goes to town on a Mesozoic lungfish. Illustration by the talented Henry Tsai

    Oh hey look, the blog has come to life again, if just for a bit. As has been typical these few years, things IRL have taken up much of my time and the website has suffered because of it. I still have a few posts that I have been sitting on as I try to find the time to finish them. Until then small updates like this will have to do.

    Just announced today in the journal PLoS ONE:

    Holliday, C.M. and Gardner, N.M. 2012. A New Eusuchian Crocodyliform with Novel Cranial Integument and Its Significance for the Origin and Evolution of Crocodylia. PLoS ONE 7(1): e30471. doi:10.1371/journal.pone.0030471

    Congratulations to the internet’s own Nick Gardnerfor helping get this guy published.

    Stomatosuchus was the quintessential "duck faced" croc. Illustration by Dmitry Bogdanov

    The croc in question — Aegisuchus witmeri— was a member of the Aegyptosuchids. They were a strange group of eusuchians that are known mostly for their weird, flat “duck faces.” As there are no living crocodylians that even come close to these guys in skull shape, it is difficult to imagine what these guys were doing with these flattened rostra. One hypothesis was that, given their numerous small teeth, these guys were filter feeders.

    Holliday and Gardner describe a preserved braincase and compare it to other published data on Aegyptosuchids. Results suggest that this guy was huge by modern croc standards (~9 meters) and no slouch for a Mesozoic croc. Muscle scars indicate the presence of strong jaw opening abilities in this taxa, which would go well for a possible filter, or suction feeder.

    Probably the most interesting feature of this guy, and the one likely to spark the most controversy, was the presence of an enlarged boss on the top of the skull. Inferred vasculature to this region suggest that Aegisuchus witmeri was using this part of its skull for something. That thing might have been a display structure such as an “eyespot” or just a particularly bright patch of skin. Though speculative, there are reasons to consider this possibility, including the fact that extant crocodylians use their heads in all manner of displays.

    All in all this was a pretty cool critter. The species epithet was named in honour of professor Lawrence Witmer, PhD, prolific paleontologist, comparative anatomist and even blogger. He is my mentor and was Dr. Holliday’s back in his PhD days. It might not be Archaeopteryx, but getting named after a bad-ass ancient crocodile isn’t half bad.

    ~Jura