Eofringillirostrum boudreauxi gen. & sp. nov.
Daniel T. Ksepka, Lance Grande & Gerald Mayr (2019)
Oldest Finch-Beaked Birds Reveal Parallel Ecological Radiations in the Earliest Evolution of Passerines.
Current Biology (advance online publication)
Free pdf:
Highlights
Finch-beaked bird fossils provide evidence for Eocene passerines with seed-based diets
Eocene stem passerines underwent a radiation paralleling that of modern passerines
Stem passerines evolved a wide array of beak shapes but ultimately died out
Summary
Beak shape plays a key role in avian radiations and is one of the most intensely studied aspects of avian evolution and ecology. Perhaps no other group is more closely associated with the study of beak shape than Passeriformes (passerines or perching birds), the most species-rich ordinal clade of modern birds. However, despite their extraordinary present-day diversity, our understanding of early passerine evolution has been hindered by their sparse fossil record. Here, we describe two new species of early Eocene stem passerines from the Green River Formation of the United States and the Messel Formation of Germany. These species are the oldest fossil birds to exhibit a finch-like beak and provide the earliest evidence for a diet focused on small, hard seeds in crown birds. Given that granivory is a key adaptation that allows passerines to exploit open temperate environments, it is notable that both species occurred in subtropical environments. Phylogenetic analyses place both species within the Psittacopedidae, an extinct Eocene clade of zygodactyl stem passeriforms that also includes the slender-beaked nectarivorous Pumiliornis, the short-beaked Psittacopes, and the thrush-beaked Morsoravis. Our results reveal that stem passerines attained a diversity of beak shapes paralleling many of the morphotypes present in extant passerine finches, thrushes, and sunbirds, more than 35 million years before these morphotypes arose in the crown group. Extinction of these ecologically diverse fossil taxa may be linked to more sophisticated nest construction in anisodactyl crown passerines versus cavity-nesting in Eocene zygodactyl stem passerines.
News:
Earliest known seed-eating perching bird discovered in Fossil Lake, Wyoming
Free pdf:
Daniel J. Field, Jacob S. Berv, Allison Y. Hsiang, Robert Lanfear, Michael J. Landis & Alex Dornburg (2019)
Timing the extant avian radiation: The rise of modern birds, and the importance of modeling molecular rate variation.
PeerJ Preprints 7:e27521v1
Unravelling the phylogenetic relationships among the major groups of living birds has been described as the greatest outstanding problem in dinosaur systematics. Recent work has identified portions of the avian tree of life that are particularly challenging to reconstruct, perhaps as a result of rapid cladogenesis early in crown bird evolutionary history (specifically, the interval immediately following the end-Cretaceous mass extinction). At face value this hypothesis enjoys support from the crown bird fossil record, which documents the first appearances of most major crown bird lineages in the early Cenozoicâin line with a model of rapid post-extinction niche filling among surviving avian lineages. However, molecular-clock analyses have yielded strikingly variable estimates for the age of crown birds, and conflicting inferences on the impact of the end-Cretaceous mass extinction on the extant bird radiation. This uncertainty has often been ascribed to a patchy avian fossil record, but the possibility of model misspecification in molecular divergence time analyses represents an important and relatively underexplored alternative hypothesis. Here, we highlight the necessity of further developing and using models that account for coordinated variation in rates of molecular evolution across a phylogeny (e.g. molecular early bursts) as a means of assessing support for a rapid post-Cretaceous radiation of crown birds. We discuss how relationships between life-history and substitution rates can mislead divergence time studies that do not account for directional changes in substitution rates over time, and suggest that these effects might have caused some of the variation in existing molecular date estimates for birds. We suggest multiple paths forward that could help resolve this and similar conflicts within other major eukaryotic clades.