[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]
Re: vaulting pterosaur launch, questions
I'm sure he wasn't the first, but the 'running take-off' was discussed
by Speakman (1993). It's based on the relatively puny pectoral muscle
mass of _Archaeopteryx_. The argument runs that having flight muscle
mass at or below 16% of total body mass renders the bird incapable of
a stationary take-off. _Archaeopteryx_'s is estimated at 9% - so it's
well below the cut-off. Grebes are said to have a flight muscle mass
below 16%, which is why they require a requiring a "taxiing" run in
order to become airborne. Speakman doesn't necessarily endorse this
line of reasoning; and the grebe example comes from Marden (1987).
Ah, interesting. I'm afraid that they seem to have misinterpreted. In
fact, looking at the Magnan dataset I have here in front of me (as
reported in Greenewalt's 1962 compilation), I note that many running
launchers have flight muscle ratios above 16% (most anseriforms, in
fact) while many standing launchers have flight muscle fractions below
16% (many raptors, owls, and some herons).
Grebes do run to launch, and they do have small muscle fractions. What
those authors seem to have overlooked is that grebes also take off from
water, have hindlimbs placed far back on the body, have short hindlimbs
unsuited for leaping, and have very high wing loadings. The low muscle
fraction actually plays into the same gestalt: aquatic birds are often
endurance flyers, with low muscle fractions composed of highly
oxidative muscle - good for steady, fast flight at cruising speed (but
not so good for bursts of power). All of these factors are related to
the running launch in grebes (and similar semi-aquatic birds). Running
launch in birds is a derived condition (at least among modern forms),
and appears to have evolved as a way to maintain takeoff ability in the
presence of several other morphological and ecological derivations,
usually associated with aquatic living. The cost of requiring a runway
is largely offset by the open habitat.
The only trait from the list that Archaeopteryx seems to have
demonstrated was low muscle fraction. However, seeing as how there are
living owls that can standing launch, with prey, at a flight muscle
fraction of just over 10%, I fail to see this as a reason to assume a
running launch. In fact, I fail to see how the running launch would
help it very much.
It would seem (though this is merely an impression) that Speakman and
Marden made the error of assuming that standing launches are more
wing-based while running launches are more hindlimb-based, with regards
to initial power impulse. In fact, early stage launch in both is
mostly hindlimb driven - standing launches in birds use mostly the
hindlimbs for initial power (see Earls, 2000).
Cheers,
--Mike
Earls, K. 2000. Kinematics and mechanics of ground takeoff in the
starling Sturnus vulgaris and the quail Coturnix coturnix. Journal of
Experimental Biology. 203: 725-739
Greenewalt, CH. 1962. Dimensional relationships for flying animals.
Smithsonian Miscellaneous Collection 144: 1-46
Michael Habib, M.S.
PhD. Candidate
Center for Functional Anatomy and Evolution
Johns Hopkins School of Medicine
1830 E. Monument Street
Baltimore, MD 21205
(443) 280 0181
habib@jhmi.edu