[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index][Subject Index][Author Index]
Re: Scaling problems in Hutchinson 2004
Couple of questions/comments:
1) Presumably there _is_ a tradeoff between efficient support and efficient
running; ie. more vertical limbs are poor for running but good for support
stresses (because the strain is more axial in a more vertical limb, see Matt
Carrano's work), whereas bent limbs with gracile distal elements are good for
running but less efficient at supporting force strains. This does _not_ mean
that a large animal cannot be built for running, and in fact run very rapidly.
Rather, it suggests that IF a large animal is not selected for running, then it
may be selected for efficient support, at the cost of running speed. To put it
another way: perhaps a 40 ton sauropod could be built to run fast, but really,
what is the point? Might as well reduce strain and put more energy into
making, say, a big belly. To those on the list with expertise in this area: is
this reasonable?
2) Are there any good references regarding scaling in aerial locomotion?
Presumably
size has an effect on acceleration (both linear accel and turning), top speed,
and relative speed in flying animals as well. I'm particular interested in
refs on verts for this, anything on birds would be fabulous (which, presumably,
would be the bulk of that literature anyway).
I find this (aerial scaling) to be less 'intuitive', in a way, because the
examples are not as easy to sort out. Fast flying birds come from both
large-bodied and small-bodied lineages. This could mean that small birds that
fly fast (like swifts) simply devote massive proportions of their bodies to
flight (which seems to be the case), but it might also imply that there are
tradeoffs that affect speed in both large and small taxa. For example, large
birds presumably get more thrust per stroke, but they also have to generate
more lift (and may have to expend proportionally more energy to recover strokes
quickly). Of course, this all pivots to a degree on having accurate speed
records for flying v
ertebrates, and I am guessing they are not that much better than for
terrestrial vertebrates (pigeons, ducks, etc should have good records, however).
3) Another concern for the bipedal and quadrapedal comparisons (and this comes
from Carrano once again) is that birds and mammals do not run the same way (in
fact, non-avian dinosaurs do not run as much like advanced birds as one might
think from phylogenetic relatedness). Birds have highly redistributed muscle
mass, a nearly horizontal femur position, and a power stroke in the legs that
pivots mostly at the knee, not the hip. I am not sure the muscle mass
comparisons are that informative, even if they are accurate. Ratites also do
not relate as well to say, a large Tyrannosaur, as one might expect.
Answers/comments would be much appreciated.
Cheers,
--Mike Habib
Johns Hopkins School of Medicine
Center for Functional Anatomy and Evolution
1830 E. Monument Street
Baltimore MD, 21205
habib@jhmi.edu