• Tag Archives Crurotarsi
  • New study shreds the dinosaur family tree (and exposes double-standards in Phylogenetic Nomenclature)

    Figurative illustration of the new phylogeny by Baron et al. 2017

    Most folks who visit my site by now have seen the big dinosaur news that has hit the interwebs. A new study from Matthew Baron, David Norman and Paul Barrett from University of Cambridge and the Natural History Museum of London, has seriously challenged the classic interpretation of dinosaur phylogeny.

    Baron, M.G., Norman, D.B., Barrett, P.M. 2017. A New Hypothesis of Dinosaur Relationships and Early Dinosaur Evolution. Nature. 543:501–512.

    Classical dinosaur phylogenetics

    Although originally thought of as two unrelated branches of Reptilia that grew to immense size during the Mesozoic (e.g., Charig et al. 1965), for the last 43 years the group, Dinosauria, has been considered monophyletic (i.e., sharing a single origin) with the subgroups, Saurischia & Ornithischia, forming the first major branches within the group (Bakker et al. 1974). Saurischians, or “reptile hips” were aligned together by their similar hip shapes, skull characters (e.g., open antorbital fenestrae), and inferred soft tissues (e.g., air sacs). Ornithischians, or “bird hips” shared a hip structure that was superficially similar to that of birds, with a pubis that pointed caudally rather than rostrally, along with a variety of unique skull characters such as a neomorphic bone known as the predentary.

    Study after study showed that this relationship was sound, and so it stayed that way. The problem with getting the same answer over and over again is that one eventually stops questioning it. Consistent results become  common knowledge, and may even graduate to dogma. That’s not so bad if that common knowledge is true, but all too often many of these “obvious” cases wind up being just so stories upon closer inspection.

    Continue reading  Post ID 1652


  • New study shows that gators are one-way breathers too.

    I would be remiss not to talk about this amazing discovery published last week in Science.

    Farmer,C.G. & Sanders,K. 2010. Unidirectional Airflow in the Lungs of Alligators. Science. vol.327:338-340

    The anatomical similarities of alligators and birds has been known for quite some time (at least 100 years), and this anatomical similarity extends down into the lungs. Though alligators lack the pneumatic carvings of the post-cranial skeleton (air sacs) that are seen in birds, saurischian dinosaurs and pterosaurs; their lungs and bronchi do share the same structural features.

    Birds have a unique lung design that allows air to pass through it in a single direction. Unlike mammals, there is no “dead end” to the avian lung. This provides the benefit of a constant supply of highly oxygenated air to the lung tissue; which allows for more efficient gas exchange. Up until last week, this lung design was thought to be a hallmark of birds, and possibly saurischian dinosaurs, and pterosaurs.

    Well it turns out that this unique avian synapomorphy is a heck of a lot older than we thought.

    Dr. Colleen Farmer, and Kent Sanders M.D. of the University of Utah, considered the uncanny anatomical similarities of the avian and crocodylian lung, and wondered if these similarities extended to the physiology too. In other words: If it looks like a unidirectional lung, does it also function like one?

    Farmer & Sanders set to work by removing the lungs of four dead alligators donated to her lab. They pumped air through them, and monitoring the direction in which it traveled (using flowmeters). They then surgically inserted flowmeters into anesthetized alligators, and measured the airflow direction in living animals. Lastly, to drive the point across completely, they filled up an excised lung with fluid that contained fluorescent beads, and proceeded to pump the water in and out. This last test was recorded, and three movies of it, were made available to the public. They can be viewed here. Three was probably overkill though, as once you’ve seen fluorescent beads move one way in a gator lung, you’ve seen them all. : )

    The results showed conclusively that alligator lungs pump air through them in one direction only. The repercussions of this find are actually pretty enormous. For starters, the similarity in anatomy and physiology of avian and crocodylian lungs, suggests that they are homologous. This would mean that both groups inherited these lungs from a common ancestor. This means that it was highly likely that all dinosaurs, pterosaurs, rauisuchians, aetosaurs, phytosaurs and the myriad of other archosaurs that graced this planet some 200 million years ago, housed this particular flow-through style lung.

    It also helps put to rest arguments about air sac functions. It has long been argued that the presence of a unidirectional lung, necessitates the presence of air sacs to “pump the air in.” (air sacs offer zero, or next to zero gas exchange potential, so there is no actual breathing going on in them). A lack of air sacs in ornithischian dinosaurs, has been used to suggest that their pulmonary physiology was more like mammals and lizards, than it was like birds (Ruben et al 1999). Data from previous research (O’Connor & Claessens 2005) has cautioned that the presence of air sacs does not guarantee the existence of a flow through system. These latest data now show us that a flow-through system can, and likely did, evolve without the “need” for an air sac pump.

    CT scan of alligator, with 3D reconstruction of lungs. For more details on what the colours mean, click the picture.

    Exactly how all of this works, is still not understood. The “hepatic piston” diaphragmatic pump of crocodylians is well known, and is likely the ultimate driver of respiration in these animals, but the nuts & bolts of how all this unidirectional flow takes place (the fluid dynamics of the lung) remains a mystery. One question that would be worthy of a follow up study (which the author’s have hinted at doing) is whether, or not a cross-current, or counter-current system (where deoxygenated blood flows perpendicular, or opposite the direction of highly oxygenated air) is present in crocodylians too. A cross-current system is found in birds. Is that unique to them, or was this also a phylogenetic “hand-me-down?” Hopefully now, with this new discovery, future research will be done on the crocodylian lung, to further understand how it actually works.

    Ultimately that is the biggest piece of news to come out of this paper. For well over 100 years, the crocodylian lung was just assumed to be a “dead-end” space that worked in a manner similar to that of mammals. It wasn’t until someone actually thought “what do we really know about this structure” did we find something quite the opposite taking place. This is hardly the first time that this has happened either (for instance). As I have mentioned (ranted/harped on) before, reptiles tend to get the short end of the stick when it comes to a lot of biological and paleontological studies (especially if they involve comparison between broad animal groups [classes]). I’m always amazed (though rarely surprised) when a study that actually looks into commonly held assumptions about these critters, finds said assumptions to be quite off the mark. Here’s hoping that we continue to see future studies like this, go on.

    In the end, all of this brings us closer to the truth about how life really works; which is why we do all of this stuff in the first place.

    ~Jura

    References


    Farmer,C.G. & Sanders,K. 2010. Unidirectional Airflow in the Lungs of Alligators. Science. vol.327:338-340

    O’Connor, P.M.& Claessens, A.M. 2005. Basic Avian Pulmonary Design and flow-Through Ventilation in Non-Avian Theropod Dinosaurs. Nature. Vol. 436:253-256.

    Ruben, J.A., Dal Sasso, C., Geist, N.R., Hillenius, W.J., Jones, T.D. 1999. Pulmonary Function and Metabolic Physiology of Theropod Dinosaurs. Science. Vol.283(5401):514-516.


  • Land lubbing crocs get their day in the sun. Also, there’s a varanid special on NOVA.

    Dr. Paul Sereno stands with others at a meeting for the American Association for the Advancement of Science in Chicago. Note the wheelbarrow like retroarticular processes on the "boar croc."
    Dr. Paul Sereno stands with others at a meeting for the American Association for the Advancement of Science in Chicago. Note the wheelbarrow like retroarticular processes on the "boar croc."

    After spending? a few years collecting and looking at the weirdness that is Gondwanan crocodyliformes, Dr. Paul Sereno has finally started to unveil stuff. With the help of National Geographic comes When Crocs Ate Dinosaurs. It appears to be a special that focuses on the remarkable – and often underrated – diversity seen within this group of animals. The highlight of the program (at least in my opinion) is the focus on all the very un-crocodile like crocodyliformes.

    The National Geographic website has a special section that shows off the various, apparently unnamed, taxa. For now, there are just placeholder names that will likely hurt the eyes and ears of anyone who had to deal with the aftermath of The Land Before Time.

    The artwork is by artist Todd Marshall. I’ve always enjoyed his portrayals of prehistoric reptiles (he tends to get almost too fanciful with dewlaps and spikes though). Sadly the accompanying animations do not do Marshall’s incredible artwork justice.? It will be interesting to see how it all gets integrated into the television show.

    Also airing tonight is a special on NOVA entitled: Lizard Kings. It features the work of Dr. Eric Pianka; a well known and respected lizard ecologist who has focused on monitors for much of his career.? The special looks to be very interesting. Especially given that it appears to have taken years for the film crew to get the footage they needed. As you read this the special has already aired. However, PBS does make their shows avaialable to watch online for free, on their website. The show should also be viewable on Hulu by tomorrow.

    A perentie monitor (_Varanus giganteus_) poses for the camera.
    A perentie monitor (_Varanus giganteus_) poses for the camera.

    I realize that both of these options are only available in the states. To date there seems to be no international options. At best there are some workarounds.

    Still, for those that can get them, both shows should prove to be entertaining.

    ~Jura