• Tag Archives birds
  • New study shows that gators are one-way breathers too.

    I would be remiss not to talk about this amazing discovery published last week in Science.

    Farmer,C.G. & Sanders,K. 2010. Unidirectional Airflow in the Lungs of Alligators. Science. vol.327:338-340

    The anatomical similarities of alligators and birds has been known for quite some time (at least 100 years), and this anatomical similarity extends down into the lungs. Though alligators lack the pneumatic carvings of the post-cranial skeleton (air sacs) that are seen in birds, saurischian dinosaurs and pterosaurs; their lungs and bronchi do share the same structural features.

    Birds have a unique lung design that allows air to pass through it in a single direction. Unlike mammals, there is no “dead end” to the avian lung. This provides the benefit of a constant supply of highly oxygenated air to the lung tissue; which allows for more efficient gas exchange. Up until last week, this lung design was thought to be a hallmark of birds, and possibly saurischian dinosaurs, and pterosaurs.

    Well it turns out that this unique avian synapomorphy is a heck of a lot older than we thought.

    Dr. Colleen Farmer, and Kent Sanders M.D. of the University of Utah, considered the uncanny anatomical similarities of the avian and crocodylian lung, and wondered if these similarities extended to the physiology too. In other words: If it looks like a unidirectional lung, does it also function like one?

    Farmer & Sanders set to work by removing the lungs of four dead alligators donated to her lab. They pumped air through them, and monitoring the direction in which it traveled (using flowmeters). They then surgically inserted flowmeters into anesthetized alligators, and measured the airflow direction in living animals. Lastly, to drive the point across completely, they filled up an excised lung with fluid that contained fluorescent beads, and proceeded to pump the water in and out. This last test was recorded, and three movies of it, were made available to the public. They can be viewed here. Three was probably overkill though, as once you’ve seen fluorescent beads move one way in a gator lung, you’ve seen them all. : )

    The results showed conclusively that alligator lungs pump air through them in one direction only. The repercussions of this find are actually pretty enormous. For starters, the similarity in anatomy and physiology of avian and crocodylian lungs, suggests that they are homologous. This would mean that both groups inherited these lungs from a common ancestor. This means that it was highly likely that all dinosaurs, pterosaurs, rauisuchians, aetosaurs, phytosaurs and the myriad of other archosaurs that graced this planet some 200 million years ago, housed this particular flow-through style lung.

    It also helps put to rest arguments about air sac functions. It has long been argued that the presence of a unidirectional lung, necessitates the presence of air sacs to “pump the air in.” (air sacs offer zero, or next to zero gas exchange potential, so there is no actual breathing going on in them). A lack of air sacs in ornithischian dinosaurs, has been used to suggest that their pulmonary physiology was more like mammals and lizards, than it was like birds (Ruben et al 1999). Data from previous research (O’Connor & Claessens 2005) has cautioned that the presence of air sacs does not guarantee the existence of a flow through system. These latest data now show us that a flow-through system can, and likely did, evolve without the “need” for an air sac pump.

    CT scan of alligator, with 3D reconstruction of lungs. For more details on what the colours mean, click the picture.

    Exactly how all of this works, is still not understood. The “hepatic piston” diaphragmatic pump of crocodylians is well known, and is likely the ultimate driver of respiration in these animals, but the nuts & bolts of how all this unidirectional flow takes place (the fluid dynamics of the lung) remains a mystery. One question that would be worthy of a follow up study (which the author’s have hinted at doing) is whether, or not a cross-current, or counter-current system (where deoxygenated blood flows perpendicular, or opposite the direction of highly oxygenated air) is present in crocodylians too.  A cross-current system is found in birds. Is that unique to them, or was this also a phylogenetic “hand-me-down?” Hopefully now, with this new discovery, future research will be done on the crocodylian lung, to further understand how it actually works.

    Ultimately that is the biggest piece of news to come out of this paper. For well over 100 years, the crocodylian lung was just assumed to be a “dead-end” space that worked in a manner similar to that of mammals. It wasn’t until someone actually thought “what do we really know about this structure” did we find something quite the opposite taking place. This is hardly the first time that this has happened either (for instance). As I have mentioned (ranted/harped on) before, reptiles tend to get the short end of the stick when it comes to a lot of biological and paleontological studies (especially if they involve comparison between broad animal groups [classes]). I’m always amazed (though rarely surprised) when a study that actually looks into commonly held assumptions about these critters, finds said assumptions to be quite off the mark. Here’s hoping that we continue to see future studies like this, go on.

    In the end, all of this brings us closer to the truth about how life really works; which is why we do all of this stuff in the first place.

    ~Jura

    References


    Farmer,C.G. & Sanders,K. 2010. Unidirectional Airflow in the Lungs of Alligators. Science. vol.327:338-340

    O’Connor, P.M.& Claessens, A.M. 2005. Basic Avian Pulmonary Design and flow-Through Ventilation in Non-Avian Theropod Dinosaurs. Nature. Vol. 436:253-256.

    Ruben, J.A., Dal Sasso, C., Geist, N.R., Hillenius, W.J., Jones, T.D. 1999. Pulmonary Function and Metabolic Physiology of Theropod Dinosaurs. Science. Vol.283(5401):514-516.


  • So, why go bipedal?

    As human beings this might come off as somewhat of a “duh” question.

    “To free our hands up, of course.”

    Ah, but like most things in life, the common sense answer is not the right one.

    Consider all the bipedal animals alive today. We have humans, obviously; kangaroos, birds, a few lemurs, and a whole swath of lizards. Of these, the “free up the forelimbs” argument really only holds true for humans, lemurs and birds. What of kangaroos and all those lizards? Exactly what does one benefit from when going bipedal?

    Do you go faster, run longer, or gain a better vantage point?

    C.kingii during a typical foraging run.

    All these questions were asked, and somewhat answered in a recent paper by Clemente et al.

    Clemente, C.J., Withers, P.C., Thompson, G., Lloyd, D. 2008. Why Go Bipedal? Locomotion and Morphology in Australian Agamid Lizards.J. Exp. Bio. 211: 2058-2065

    Abstract:

    Bipedal locomotion by lizards has previously been considered to provide a locomotory advantage. We examined this premise for a group of quadrupedal Australian agamid lizards, which vary in the extent to which they will become bipedal. The percentage of strides that each species ran bipedally, recorded using high speed video cameras, was positively related to body size and the proximity of the body centre of mass to the hip, and negatively related to running endurance. Speed was not higher for bipedal strides, compared with quadrupedal strides, in any of the four species, but acceleration during bipedal strides was significantly higher in three of four species. Furthermore, a distinct threshold between quadrupedal and bipedal strides, was more evident for acceleration than speed, with a threshold in acceleration above which strides became bipedal. We calculated these thresholds using probit analysis, and compared these to the predicted threshold based on the model of Aerts et al. Although there was a general agreement in order, the acceleration thresholds for lizards were often lower than that predicted by the model. We suggest that bipedalism, in Australian agamid lizards, may have evolved as a simple consequence of acceleration, and does not confer any locomotory advantage for increasing speed or endurance. However, both behavioural and threshold data suggest that some lizards actively attempt to run bipedally, implying some unknown advantage to bipedal locomotion.

    The conclusions reached, were interesting and quite unexpected.

    I’d say the most surprising part would have to be the discovery that both endurance and speed were found to be inconsequential. Those were the two forces that I figured would have driven the push towards bipedalism. Apparently this is not the case.

    In fact, the only correlate that the authors found was that a switch to bipedalism resulted in an increase in acceleration. Short of that, the authors viewed bipedalism as more of a side effect of speedy locomotion, rather than anything else.

    As one author put it: “The lizards were pulling a wheelie.”

    There are some gripes (niggles if you will) with the paper. For one, the authors assert that a switch to bipedalism allowed birds to incorporate their forelimbs into wing design. While being bipedal certainly allowed for this, it could not have been the cause. Birds descended from dinosaurs, and very, very very few dinosaurs had wings. Theropods were sporting freed forelimbs for some 80 million years, or so (probably longer given the proposed ancestors of dinosaurs). Wings were not the cause, simply a benefit. Something else had to have spurred the evolution of bipedality.

    Side note: What the heck were theropods doing with those forelimbs anyway? Most paleo artists tend to draw theropods with their arms tucked to the side, yet work by Carpenter (2002) has shown that there was some considerable range of motion in theropod forelimbs. They weren’t brachiating from tree to tree, or anything, but they could certainly do a heckuvalot more than just tuck their arms to the side. Even T.rex with its embarrassingly short forearms, had a surprisingly large range of motion to them. So what’s up paleo art guys? Let’s see some theropods putting their arms to use.

    The largest SNAFU in the paper comes from the cladogram that the authors chose. They chose to go with the broken molecular tree used by Townsend et al, which asserts that Iguanians are actually Scleroglossan lizards. This might sit all fine and well when looking at molecules, but it utterly falls apart upon a morphological assessment. In order for Iguanians to fit in the Scleroglossan family tree, they had to have undergone a tonne of morphological reversals, including the re-softening of the tongue and the re-evolution of both postorbital bars (surprisingly, the latter is actually not out of the realm of impossibility as tuataras have apparently done just that).

    Due to this tree choice, the authors erroneously concluded that bipedalism evolved only once in the lacertilian tree and was lost a multitude of times, with a putative re-acquirement in varanids.

    Another minor complaint comes from the very slight use of Chlamydosaurus kingii; the only lizard known to be a “true” biped (see: Shine & Lambeck 1989). Given that the authors were trying to spot differences between bipeds and quadrupeds, I can understand the use of lizards like Ctenophorus, with their greater spectrum of gaits. However, in doing so they should have qualified their conclusions better in regards to how lizards obtain a bipedal stance. In Chlamydosaurus, bipedal trotting is attained from a standing start. Quadrupedal stance is only seen when stopping to eat. Furthermore, foraging runs and escape runs use two different gaits, with the latter gait more akin to that of other facultatively bipedal lizards. Judging from the stats given in the paper, it seems apparent that the C.kingii used in this study were mostly running away.

    The final complaint comes from the supplementary movies given.

    Frankly the movies are just too short. I have to go super slow-mo just to see anything. So that’s a bummer.

    Overall the paper is rather good. The authors discovered that Lophognathus gilberti runs bipedally 85% of the time. This suggests that C.kingii is not the only truly bipedal lizard out there.

    The authors also observed that, despite any advantage in speed, or endurance, some lizards intentionally push their center of mass towards their hips early on in the running phase in order to more quickly obtain a bipedal gait. The reasons behind this are unclear, but do suggest that bipedalism confers some advantage not discovered during this experiment.

    One advantage alluded to, but never really elaborated on, was the faster acceleration noted in bipeds. Though maximum speed was no different than in a quadruped, this speed was obtained faster. Ecologically I could see this being very advantageous. When one is trying to avoid a predator, maximum top speed is probably less important than reaching that top speed as fast as possible.

    If one lizard has a top speed of 12km/hr and another has a top speed of 8km/hr, and the goal (burrow) is only 50 meters away, then that extra speed isn’t going to mean much. Especially if the slower lizard is able to hit its top speed faster.

    Apparently lizards “pull a wheelie” because in their ecosystem it pays to be a drag racer, rather than a Daytona 500 car.

    ~Jura

    References

    Carpenter, K. 2002. Forelimb Biomechanics of Nonavian Theropod Dinosaurs in Predation. Concepts of Functional Engineering and Constructional Morphology. Vol. 82(1): 59-76.

    Shine, R., & Lambeck, R. 1989. Ecology of Frillneck Lizards, Chlamydosaurus kingii (Agamidae), in Tropical Australia. Aust. Wildl. res. Vol. 16: 491-500.

    Townsend T, Larson A, Louis E, Macey JR. 2004. Molecular Phylogenetics of Squamata: The Position of Snakes, Amphisbaenians, and Dibamids, and the Root of the Squamate Tree. Syst Biol. Vol. 53(5):735-57.