• Category Archives Dinosaurs
  • Dinosaur articles

  • Extinct Reptiles » Dinosaurs
  • The return of the scaly T. rex to modern paleo-art

    Tyrannosaurus rex walking towards camera. Art by John Sibbick.

    [NOTE: Post has been updated to include a section on scale size]

    This has certainly been an interesting year. Two papers dropped in the past three months that have put the brakes on a recent trend in paleo-art. That trend? Why the feather-coated T. rex of course.

    First, in March, we saw the release of a paper detailing a new species of Daspletosaurus and its relationship to D. torosus.

    Carr, T.D., Varricchio, D.J., Sedlmayr, J.C., Roberts, E.M., Moore, J.R. 2017. New Tyrannosaur with Evidence for Anagenesis and Crocodile-Like Facial Sensory System. Scientific Reports. 7(44942):1–11.

    In this paper, Carr et al. argue for the designation of a new Daspletosaurus species, D. horneri. The authors argue, based on skull shape and chronostratigraphic position, that D. horneri was the direct ancestor to D. torosus. I thought that the authors put forth a compelling argument for this anagenic event and backed up their position well. Interestingly, this part of the paper should have been the most controversial. As anyone who has read anything from Horner and Scanella over the past eight years can attest, arguing for a direct ancestor-descendant relationship for dinosaurs is difficult to do and even harder to win over others in the field. So it is somewhat surprising to see a case for anagenesis in Daspletosaurus taken so well by the palontological community. All the more so given that it involves a tyrannosaur, the poster children for “cool guy” dinosaurs.

    Instead, the most controversial part of the paper wound up being their soft-tissue reconstruction of the face for D. horneri. The author responsible for the soft-tissue reconstruction was Jayc Sedlmayr of Louisiana State University. Sedlmayr did his doctorate on osteological correlates for vasculature in extant archosaurs (birds & crocs). He is the seminal alumnus of the WitmerLab and thus is well within his wheelhouse for this type of soft-tissue reconstruction. Sedlmayr borrowed heavily from the work of another WitmerLab alumnus, Tobin Hieronymus, whose PhD work involved osteological correlates for integument on the skulls of animals. Although the skin is often well away from the underlying bones on most of the body, there are exceptions when it comes to the skull. There, areas that are not heavily muscled, tend to show intimate connections between the skin and the underlying bone. Hieronymus used these connections to determine how different integumentary appendages (scales, hair, feathers) affect the underlying bone (Hieronymus & Witmer 2007; Hieronymus et al. 2009). The authors found that the surface texture along the skull of D. horneri was “hummocky”. That is, it was covered in lots of closely packed ridges. According to Hieronymus & Witmer (2007), this texture correlates to scales as the overlying integumentary appendage. Thus, according to the authors, D. horneri had a scaly face (this is grossly oversimplified as the authors were able to piece together a variety of different integument variants along the skull, but you get the idea).

    Scaly tyrannosaur cannonball one had been shot.

    Then two weeks ago, we saw the release of another paper on tyrannosaur integument. However, unlike the previous paper, this one was specifically dedicated to integumentary types in tyrannosaurids.

    Bell, P.R., Campione, N.E., Persons, W.S., Currie, P.J., Larson, P.L., Tanke, D.H., Bakker, R.T. 2017. Tyrannosauroid Integument Reveals Conflicting Patterns of Gigantism and Feather Evolution. Biology Letters. 13:20170092

    In this paper, the authors set out to survey all known instances of “skin” impressions for tyrannosaurids. Their list of taxa included Albertosaurus, Tarbosaurus, Daspletosaurus, and Gorgosaurus. Their results pretty definitively indicated that scales were the predominant integumentary appendage on tyrannosaurids. The authors then went on to speculate why that would be if earlier tyrannosauroids had filamentous integument. They performed an ancestral character state reconstruction based on Parsimony and Bayesian-based trees from Brussatte and Carr 2016. Their results found that filaments came out strongly as the ancestral character for tyrannosauroids, but by no later than Tyrannosauridae proper, a reversion to scales had taken effect. The authors attributed this to body size evolution. Namely, larger tyrannosauroids reverted to scales over protofeathers.

    Cannonball number 2 had just been shot.

    Continue reading  Post ID 1711


  • New study shreds the dinosaur family tree (and exposes double-standards in Phylogenetic Nomenclature)

    Figurative illustration of the new phylogeny by Baron et al. 2017

    Most folks who visit my site by now have seen the big dinosaur news that has hit the interwebs. A new study from Matthew Baron, David Norman and Paul Barrett from University of Cambridge and the Natural History Museum of London, has seriously challenged the classic interpretation of dinosaur phylogeny.

    Baron, M.G., Norman, D.B., Barrett, P.M. 2017. A New Hypothesis of Dinosaur Relationships and Early Dinosaur Evolution. Nature. 543:501–512.

    Classical dinosaur phylogenetics

    Although originally thought of as two unrelated branches of Reptilia that grew to immense size during the Mesozoic (e.g., Charig et al. 1965), for the last 43 years the group, Dinosauria, has been considered monophyletic (i.e., sharing a single origin) with the subgroups, Saurischia & Ornithischia, forming the first major branches within the group (Bakker et al. 1974). Saurischians, or “reptile hips” were aligned together by their similar hip shapes, skull characters (e.g., open antorbital fenestrae), and inferred soft tissues (e.g., air sacs). Ornithischians, or “bird hips” shared a hip structure that was superficially similar to that of birds, with a pubis that pointed caudally rather than rostrally, along with a variety of unique skull characters such as a neomorphic bone known as the predentary.

    Study after study showed that this relationship was sound, and so it stayed that way. The problem with getting the same answer over and over again is that one eventually stops questioning it. Consistent results become  common knowledge, and may even graduate to dogma. That’s not so bad if that common knowledge is true, but all too often many of these “obvious” cases wind up being just so stories upon closer inspection.

    Continue reading  Post ID 1711


  • Modern-day paleo myths: Dinosaurs as lizards

    Paleomyths

    In this day and age there are no shortage of books, websites, and videos dedicated to debunking classic paleo myths. The majority of this mythbusting focuses on myths about dinosaurs. As the poster children for paleontology, this isn’t that surprising. With so many takes on this subject it comes as no surprise that all of the classic dinosaur myths have long since been debunked, such as dinosaurs as low-energy tail draggers, walking around like Godzilla, being evolutionary failures, inferiority to mammals, being pee brained monsters, etc.

    However, as quickly as these classic dinosaur myths have been eradicated, new ones have come and taken their place. These myths/misconceptions are routinely cited today without any question despite being just as erroneous as the myths that preceded them.

    This is the start of a new series I want to cover on the site: dispelling modern myths in vertebrate paleontology. Given the bent of my website, these myths/misconceptions will largely stay focused on reptile-related animals, though I am open to taking the occasional foray into other animal groups if the myths are egregious enough (which is to say that suggestions are welcomed).

    The seminal installment for this series is one that I see mentioned time and again:

    “Dinosaurs were once thought of as big lizards.”

    Continue reading  Post ID 1711


  • Jurassic World Review

    It's here!
    It’s here!

    I figured if I was going to do a Jurassic World-related post on Stegosaurus I might as well follow it up with a review for the film. I grossly underestimated the draw of dinosaurs to the cinema. Despite 22 years of Jurassic Park, Walking with Dinosaurs (BBC version, not the Disney thing), and so on, people never seem to be burnt out on dinosaurs. That’s good news for paleontology (yay!), and also for movies seeing as how Jurassic World just raked in a record-breaking $208.8 million domestic in its opening weekend.

    So what did I think?  In short: I liked it and found it to be a worthy successor to the franchise.

    If you’d like the longer, spoiler-ridden version click on the jump.
    Continue reading  Post ID 1711


  • Jurassic World and the case of the droopy-tailed Stegosaurus

    As I write this the US premiere of Jurassic World is just around the corner. I had gone back and forth regarding this post given that we currently know very little about the film and as such the interpretations written about here and elsewhere may well be pointless by the time the film premieres.

    Ultimately I decided to post this anyway since the overall thrust of the article should remain true regardless of how the film pans out.


    Now there has been a lot of buzz around Jurassic World since it was first announced last year. The buzz has been mixed, but fairly positive. I suspect this was, in part, because everyone was happy to hear that the godawful military dinosaur idea was shelved in favour of a more “traditional” JP franchise storyline. Nonetheless the movie has still drawn its fair share of detractors, including myself. Most of the people who are unhappy with the film are either paleontologists, or hardcore dinophiles. Many of the problems leveled at the film have to do with the portrayal of the extinct animals. The problems are actually myriad ranging from pterosaurs capable of picking up humans using grasping feet, mosasaurs that are twice the size of blue whales, sauropods covered in elephant skin rather than scales (a problem not unique to Jurassic World), everything about Velociraptor, and of course Indominus rex.  My biggest beef with the film is that the dinosaurs are not being shown as dinosaurs so much as monsters. However, after The Lost World: Jurassic Park came out it became pretty evident that Spielberg’s original vision of portraying dinosaurs as animals had been shelved in favour of the more entertainment-friendly movie monster approach. However, for what seems like a majority of the detractors, the biggest gripe with the film has to do with a lack of  feathers on pretty much all the dinosaurs. This seems to be a common theme these days with a particularly vocal group of dinophiles and paleontologists strongly pushing for the feathering of every dinosaur in sight and insisting that all media that portrays scaly (erroneously called: “naked”) dinosaurs is inaccurate. Never mind the fact that a feathered, pack-hunting, 2 meter tall Velociraptor mongoliensis is still every bit as inaccurate as a scaly one.

    Anyway, I digress. Dealing with the overwhelming amount of internet drama surrounding Jurassic World (and the media depiction of dinosaurs in general) is a topic for another day. My reason for writing this post is centered around one particular criticism that popped up a few weeks ago.

    Continue reading  Post ID 1711


  • Tall spines and sailed backs: A survey of sailbacks across time

    One of the quintessential depictions of prehistoric times is that of an ancient, often volcano ridden, landscape full of animals bearing large showy sails of skin stretched over their backs. Sailbacked animals are rather rare in our modern day and age, but back in the Mesozoic and Paleozoic there were sails a plenty.

    By far the most popular sailbacked taxa of all time would be the pelycosaurs in the genus Dimetrodon. These were some of the largest predators of the Permian (up to 4.6 meters [15 feet] long in the largest species). Dimetrodon lived alongside other sailbacked pelycosaurs including the genus Edaphosaurus. These were large herbivores (~3.5 m [11.5 ft] in length) that evolved their sails independently from Dimetrodon. The Permian saw many species of sphenacodontids and edaphosaurids, many of which sported these showy sails (Fig. 1. [1–8]).

    SailbackRoster
    Fig. 1. A brief survey of the sailbacks of prehistory. Permian sailbacks, the sphenacodontids: Dimetrodon(1), Sphenacodon(2), Secodontosaurus(3), and Ctenospondylus(4). The edaphosaurids: Edaphosaurus(5), Ianthasaurus (6), Echinerpeton(7), Lupeosaurus(8). The temnospondyl: Platyhystrix(9). Triassic sailbacks, the rauisuchians: Arizonasaurus(10), Ctenosauriscus(11), Lotosaurus(12), and Xilousuchus(13). Cretaceous sailbacks, the theropods: Spinosaurus(14), Suchomimus (15), Acrocanthosaurus (16), and Concavenator (17). The ornithopod: Ouranosaurus (18), and the sauropod: Amargasaurus (19). Image credits: Dmitry Bogdanov (1–2, 8, 14–15), Arthur Weaseley (5, 19), Smokeybjb (7), Nobu Tamura (3–4, 6, 8–9, 10–12), Sterling Nesbitt (13), Laurel D. Austin (16), Steven O’Connor (17), Sergio Pérez (18).

    However sails were hardly a pelycosaur novelty. The contemporaneous temnospondyl Platyhystrix rugosus (Fig. 1 [9]) also adorned a showy sail.

    Fast forward 47 million years into the Triassic and we find the rauisuchians Arizonasaurus babbitti, Lotosaurus adentus, Xilousuchus sapingensis, and Ctenosauriscus koeneniall bearing showing sails on their backs (Fig. 1 [10–13]). Much like in the Permian, many of these taxa were contemporaneous and, while related, many likely evolved their sails separately from one another.

    There are currently no fossils of sailbacked tetrapods in the Jurassic (as far as I know. Feel free to chime in in the comments if you know of some examples). However the Early Cretaceous gave  us a preponderance of sailbacked dinosaurs (Fig. 1 [14–19]) including the cinematically famous theropod Spinosaurus aegyptiacus, the contemporaneous hadrosaur Ouranosaurus nigeriensis, the gharial-mimic Suchomimus tenerensis, the potentially dual sailed sauropod Amargasaurus cazaui, as well as the allosauroids Acrocanthosaurus atokensis, and Concavenator corcovatus. Lastly, the discovery announced last year (and just now coming to light in the news) of better remains for the giant ornithomimid Deinocheirus mirificus have revealed that it too may have sported a small sail along its back.

    Once again we find a group of related, largely contemporaneous, animals, most of which probably evolved their sails separately.

    Such a huge collection of sailbacked animals all living around the same time (and sometimes the same place) has begged for some type of functional explanation. The usual go-to for large, showy surfaces like these or the plates of Stegosaurus has been thermoregulation. The thinking being that blood pumped through a large surface area like this, when exposed to the sun, has the ability to warm up faster than other areas of the body. Conversely when the sail is placed crosswise to a wind stream, or parallel to the orientation of the sun, heat will radiate out into the environment faster than other areas of the body. That most sailbacked dinosaurs were “localized” to equatorial areas, coupled with the large sizes of all the taxa (1-10 tonnes depending in species) has favoured a cooling mechanism function for dinosaur sails. Whereas a heating function has been presumed to be the primary function for sails in Dimetrodon and Edaphosaurus. No real function has been ascribed to the sails in rauisuchians or Platyhystrix, though this is probably due to a lack of knowledge/interest in these groups.

    Alternate functions proposed for these sails have included a self-righting mechanism for swimming, sexual signaling and other presumed display functions. In certain cases, namely Spinosaurus aegyptiacus and Ouranosaurus nigeriensis, it has even been argued that the enlarged spines did not support a sail, but rather were supports for a large, fatty hump akin to that of camels or bison (Bailey 1996, 1997).

    Given the wealth of hypotheses for potential sail functions it would be beneficial to first understand what extant sailbacked taxa use their sails for. Unfortunately—though unsurprisingly—there are few if any scientific studies on sail use in extant sailbacked animals. This has lead to the apparent assumption that there are no extant vertebrates with sailbacks.

    There are, in fact, quite a few sailbacked animals alive today. These include various fish, amphibians and even reptile species. Learning what these taxa use their sails for may offer us a glimpse at what extinct animals were doing with their sails.
    Continue reading  Post ID 1711


  • “Feathers” on the big, “feathers” on the small, but “feathers” for dinosaurs one and all?

     

    Yutyrannus artwork by Brian Choo. Sciurumimus artwork by Arkady Rose

    This year has seen the discovery of two big deal dinosaur specimens. At least they are a big deal in regards to dinosaur integument and, possibly, metabolism.

    First off from a few months ago we had the announcement the theropod Yutyrannus hauli, the “beautiful feathered tyrant.”

    Xu, X., Kebai, W., Ke, Z., Qingyu, M., Lida, X., Sullivan, C., Dongyu, H., Shuqing, C., Shuo, W. 2012. A Gigantic Feathered Dinosaur from the Lower Cretaceous of China. Nature. Vol.484:92-95

    This was not just a single fossil, but a collection of three fossils (one might be tempted to call it a family group, but that would only be speculation). As with all other dinosaur fossils that have been found to have filamentous integument, these guys come from Liaoning, China. They are suspected to have come from the Jehol Group in the Yixian formation. I say suspected because the complete three specimen set was a purchase from a fossil dealer, an all too common occurrence for Chinese fossils. As such the provenance information is unknown. A lot of Chinese fossil dealers don’t like to give away the location of their find due to the potential loss of other profitable specimens. This current trend in China is a good example of what happens when capitalism comes into play with fossil collecting (something that the U.S. has been mostly, but not entirely, able to avoid). So it is currently uncertain whether these fossils are from the Yixian. However given that all the others guys are too it is probably a good bet. Given the sketchy nature in which many Yixian fossils are collected, coupled with the possibly large consequences of the find, one should naturally be skeptical of the fossil. Had it been one individual on multiple slabs I would question its validity as a real thing. However since Y.huali is known from three individuals, and the filaments seem to follow a consistent pattern around the body (compare that to the helter-skelter nature of Tianyulong‘s preservation), forgery seems unlikely. These guys are probably the real deal. This has some potentially far reaching consequences to interpretations of Late Cretaceous coelurosaurs and the Jehol Biota itself (more on this in a bit).

    The second announcement came just a few weeks ago. This was the discovery of a potentially new, miniscule theropod from Bavaria Germany.

    Rauhut, O.W.M., Foth, C., Tischlinger, H., Norell, M.A. 2012. Exceptionally Preserved Juvenile Megalosauroid Theropod Dinosaur with Filamentous Integument from the Late Jurassic of Germany. PNAS Early Edition:1203238109v1-201203238.

    The specimen is exceptionally well preserved. So well preserved in fact that it actually looks like a plastic toy. While this degree of preservation warrants importance all its own, the main interest behind this new guy—dubbed: Sciurumimus albersdoerferi (Albersdörfer’s squirrel mimic)—is the apparent presence of filamentous integument on the body coupled with its apparent placement among much more basal theropods. This discovery has far reaching consequences for theropod integument interpretations. Note: As with Y.hauli, Sciurumimus albersdoerferi was also purchased from a private collector. I don’t suspect forgery here either as this was in Germany, where fossil dealing is neither a big problem nor a lucrative business. The exceptional detail on the specimen would also require a substantial amount of theropod knowledge to pull off. Anyone having that amount of knowledge is more likely to be a real paleontologist than a get rich quick forger.

    Continue reading  Post ID 1711


  • The dangers of documentaries.

    I just had to post a link to the current discussion on the treatment of science in current documentaries.

    SVPOW’s Matt Wedel was on the recent Discovery Channel docu-travesty: Clash of the Dinosaurs. While scientists who work with the media, have gotten used to having their data distorted a bit and hyperbolized for the alleged sake of “entertainment,” Matt actually had his words chopped up and edited in such a way as to make it sound like he was advocating a now well outdated view of dinosaur anatomy.

    This blatant case of slander has raised the question of what one should do in this situation. It has also brought up the broader question of how scientists should handle the media. Should we just sit back, hoping that the interviewers will present the facts as best they can, and then deal with any possible blowback if/when that fails? Should scientists demand tighter editorial control over what is shown in videos like these? We are their scientific consultants after all. Theoretically they need us for legitimacy; which gives us a bargaining chip.

    I don’t know what the right answer is. The least I can do is help Matt pass this info along so future researchers who are asked for an interview, can ask the production crew for assurances that they won’t be slandered in the final product.

    Post your thoughts over on SVPOW, and pass the story on.

    ~Jura


  • New paper says dinosaurs were endomorphs.

    From left to right: Endomorphic Jay Cutler, Mesomorphic Arnold Schwarzenegger, and Ectomorphic poster-child Frank Zane
    From left to right: Endomorphic Jay Cutler, Mesomorphic Arnold Schwarzenegger and Ectomorphic poster-child Frank Zane

    Endo-what now? Allow me to explain.

    If one studies physical fitness (academically, or practically), then one is bound to come across the three main human body types. The endomorph, mesomorph and ectomorph.

    Endomorphs are characterized by their ability to easily gain weight (be it fat, or muscle).

    Ectomorphs are characterized by their ability to easily lose weight (fat, or muscle)

    Mesomorphs are the middle ground group that appear to have the most malleable bodies.

    In general, endomorphs have lower metabolisms than the other two, while ectomorphs tend to “run hot” all the time. Few people are all one way, or the other, but a notable dominance of one type, or another is usually prevalent.

    The endo/ecto part can get confusing; especially if one is used to these prefixes in the context of endotherm/ectotherm. The names seem to be reversed from what one might normally hear (ectomorphs being more “warm-blooded” than endomorphs etc). The names have nothing to do with thermophysiology. They were coined after the germinative layers of the body during embryonic development. Endoderm forms the digestive tract, and endomorphs are usually stereotyped as fat. Ectotoderm forms the skin, and ectomorphs are usually stereotyped as being “all skin and bones.”

    The reason I went with these specific bodybuilders (Jay Cutler, Arnold Schwarzenegger and Frank Zane) was partly to buck these stereotypes, but also to point out something that the news outlets are missing. Namely that having a lower metabolic state, does not mean one is a “couch potato” or has “forgone exercise.” Bigger, means more massive. That may mean fat, but as one can see above, it also can mean muscle and bone. Dinosaurs were not fatter than mammals. They were bigger.

    So what am I rambling on about?

    Grab a calculator and come along for the ride.

    Continue reading  Post ID 1711


  • A critical evalution of Tianyulong confiusci – part 3: Plucking at the idea of feathered dinosaurs

    This post took a little longer to get together than I expected. Much like the first installment of this series, I found myself writing more and more. This time, though, rather than bother with breaking the post up into a bunch of smaller sections, I’ve decided to just dump the whole thing online at once.

    Don’t worry, I’ve provided lots of pretty pictures to ease the eye strain. 🙂

    Tianyulong

    While an in-depth look at Tianyulong confiusci‘s filaments (or as in-depth as one can get with just photos), has left me with doubts regarding their validity, one question still lingers.

    If the filaments do prove to be genuine epidermal structures, then what does this mean for dinosaurs in general?

    When this little ornithischian was announced, many in the paleo community (in particular the paleo-art community) seem to have used this little guy as a license to draw feathers on pretty much any dinosaur. After all, if protofeathers are found in ornithischians and saurischians, then it seems likely that they were a basal trait for dinosaurs in general. Some have even argued that the filaments alleged for Tianyulong, along with the protofeathers of maniraptorans, and the “fur” in pterosaurs, are all homologous structures; thus making a “furry” covering a primitive (plesiomorphic) trait for all of Dinosauria.

    This is where we really need to start putting the brakes on. One only needs to do a cursory examination of any archosaur cladogram to see that there is a problem with this argument.

    Though it is all too often forgotten, we have found the skin impressions from practically every major dinosaur group known to science. You know what these impressions show?

    Scales

    Scale impressions from the stegosaur Gigantspinosaurus sichuanensis, from Xing Lida's Dinosaur Channel

     

    In practically every case, “skin” impressions from dinosaurs show them to have been scaly. Impressions from hadrosaurs (Sternberg, 1909, Anderson et al 1999), ceratopians (Brown 1917, Sternberg 1925), stegosaurs (Xing et al 2008, and photo on the left), ankylosaurs (Parks, 1924), sauropods – including embryos (Coria and Chiappe 2007), and most theropods (Abelisaurs [Czerkas & Czerkas 1997], Allosaurs [Pinegar et al 2003] and Tyrannosaurs [Currie et al 2003]) have all shown the presence of hexagonal, or tuberculate scales. Dinosaurs were a decidedly scaly bunch. (Proto)feathers were the exception, not the rule.

    A common counter-argument to this has been that protofeathers could have been lost as animals got larger, or that protofeathers were an ontogenetic thing, with fuzzy babies going bald as they reached adulthood.

    The essential problem with this argument is that scales are not equivalent to naked skin.

    Scales, like hair and feathers, are a form of integument. Though they form as an infolding of the epidermis, they nonetheless lie on top of it. There are certain mutations in reptiles that will produce scaleless mutants (e.g. “silkback” dragons). These mutants retain their epidermis (which often looks very loose). The epidermis can also be clearly viewed between the scales of snakes while they are swallowing a large prey item. If dinosaurs really did lose protofeathers as they got larger, then one would expect to see patches of naked skin in between patchy feathers (much like what we see in extant pachyderms), but that’s not what we are seeing.

    "Silkback dragons." A new breed of bearded dragon that lacks scales. Photo from the Bearded Dragons and Other Creatures website. Click the photo for more information.
    “Silkback dragons.” A new breed of bearded dragon that lacks scales. Photo from the Bearded Dragons and Other Creatures website. Click the photo for more information.

    It is often pointed out that birds have both scales and feathers, thus making it possible for scales to occur in conjunction with feathers on dinosaurs.

    However, this generalizes the relationship between scales and feathers. The fact is scales in birds do not occur because of an absence of feathers, but rather from active suppression of feather formation (Sawyer and Knapp, 2003). If one has ever plucked a chicken one might notice a distinct lack of scales on the most of the body. Despite the fact that feathers form along tracts in the skin, the areas between these tracts remain bare. Ostriches (Struthio camelus) provide another prime example of this.

    Ostrich pic from: T-Rat's Dinosaur Pages. Click to visit.
    Ostrich pic from: T-Rat’s Dinosaur Pages. Click to visit.

    Ostriches are large birds that, like most large animals living in tropical climates, have undergone a fair amount of insulation loss in order to avoid overheating. One need only look at the bare flanks, or neck of an ostrich to see that scales are nowhere to be found on these section. Scales only occur on the tarsometatarsal (ankle and toe) portion of the body. In fact there is a rather sharp demarcation where this occurs. This demarcation agrees well with embryonic studies of diapsids which show how integument formation occurs (Alibardi & Thompson 2001).

    Feather ß-keratin proteins are likely homologous with scale ß-keratin. However they are also smaller than scale proteins (likely caused by a deletion to the scale ß- keratin gene [Gregg et al 1984]). Taken together all of this suggests an antagonistic relationship between scales and feathers. One that would determine integument placement based off of where one protein cascade ends, and another one begins.

    To put it another way, the chances of a scaly dinosaur with a feathery mohawk, are extremely unlikely.

    The ontogenetic argument seems even less likely, as it posits that dinosaurs lost one type of integument as hatchlings and then grew a completely different type as they reached adulthood. This would make dinosaurs unique among vertebrates in doing that.

    To summarize then, scaly dinosaurs were not “naked” like elephants and rhinos. If we are to believe that a dinosaur group lost protofeathers as it evolved to be larger, then we must also assume that group then re-evolved scales in its place.

    It is at this point where a cladogram comes in handy.

    The following are three cladograms showing the possible evolution of filamentous integument in archosaurs. Each terminal group is one that we know the integument for (though not the exact member who’s picture I used). I’ve simplified things a bit with the coelurosaurs due to the nebulous nature of both Sinosauropteryx prima and the putative tyrannosauroid Dilong paradoxus. This should have little effect on the results as all these guys would do is add even more steps to the following situations. The general outcome remains unchanged.

    The following are a few hypotheses that have been proposed over the last month for dinosaur integument evolution.

    Hypothesis 1: The filaments seen in Tianyulong, Psittacosaurus, maniraptors, and pterosaurs are all homologous structures, thus making protofeathers the plesiomorphic trait for all of Dinosauria.

    If these filaments are homologous. Blue dots indicate where filaments would have been lost, and scales would have re-evolved. Click picture to enlarge.
    If these filaments are homologous. Blue dots indicate where filaments would have been lost, and scales would have re-evolved. Click picture to enlarge.

    Take a look at our first cladogram. The blue dots indicate cases where a trait was lost, or reversed. In order for our first hypothesis to be true, then protofeathers would have to have been lost a total of 7 times! Also keep in mind what I mentioned previously. We are not just talking about protofeather loss, but also scale re-acquisition. That would also have to have occurred 7 times; making for a whopping 14 evolutionary steps!

    Hypothesis 2: The filaments seen in Tianyulong, Psittacosaurus, maniraptors, and pterosaurs are merely analogous to each other. They represent yet another case of convergent evolution.

    If filaments are convergent. Red dots indicate areas where filaments would have evolved independently. Click to enlarge.
    If filaments are convergent. Red dots indicate areas where filaments would have evolved independently. Click to enlarge.

    As the second cladogram shows; if this position is true, then protofeathers would have evolved a total of 4 different times. Once in the theropod line, once in pterosaurs, and twice in Ornithischians. That’s still a lot, but not nearly as many as in our first case.

    Hypothesis 3: Protofeathers were the plesiomorphic trait for ornithodirans (pterosaurs and dinosaurs), but were lost at the base of Dinosauria, and subsequently reacquired by various dinosaur groups over time.

    If filaments were ancestral, but were lost early on and then reacquired. Click image to enlarge.
    If filaments were ancestral, but were lost early on and then reacquired. Click image to enlarge.

    As one can see from cladogram 3 there, this situation results in a messy outcome. We see a single re-evolution in theropods, while Ornithischians show a helter-skelter pattern of filament reacquisition, and subsequent loss. The result is 1 case of evolution, 4 cases of filament loss as well as 4 cases of scale reversal, and 2 cases of filament re-evolution; making for a grand total of 11 steps.

    Technically one could make the 3rd cladogram a bit different by having filamentous integument evolve twice within Ornithischia. This reduces the steps needed to 6, and makes for a cladogram very similar to cladogram 2.

    A general rule of thumb for systematic paleontology, is to assume that evolution takes the least amount of steps possible (we assume Nature is generally lazy that way). As such, the evolutionary situation that produces the fewest “steps” is assumed to be the most likely situation. Nature doesn’t have to flow that way. There are cases out there where evolution might take a more complicated road, but in general this assumption that the simplest explanation is the most likely, tends to hold up.

    So what does that say about our current situation?

    Assuming that filamentous integument occurred a few times in ornithodiran evolution, results in a cladogram with substantially fewer steps (4). As such, it appears the most likely, or most parsimonious case.

    Protofeathery integument could still be basal to Dinosaurs, and all those necessary reversals could still have occurred, but the road getting there seems unnecessarily complicated, and thus rather unlikely.

    As it stands right now, it appears that if the filaments on Psittacosaurus and Tianyulong did belong to their respective owners, then they are a case of convergent evolution. Though generally frowned upon in systematics (mostly because it is a pain in the ass for phylogenetics), convergence is a rather common feature of evolution. For instance, in squamates alone the evolution of live birth has occurred a conservative 100 times (Shine 2005)!

    So yeah, convergence happens; even for seemingly complicated things. That the filaments in these ornithischians, bear almost zero similarity to those of Sinosauropteryx and kin, further supports the hypothesis that they are an independent case of evolution.

    There is another alternative that seems to rarely get mentioned. It is possibile that these filaments are actually scale derivatives. This would not be that surprising. Scales produce a wide variety of different ornamental structures in extant reptiles (from strange nose protuberances in certain iguanians, to flashy frills in agamids, and soft velvety skin in some geckos). In fact, the presence of the Psittacosaurus “quills” alongside scales, suggest that they are more likely to be a scaly derivative, than a feathery one.

    Test caption

    gekkoninae_rhacodactylus_ciliatus_orange

    atheris_hispida

    Gonocephalus grandis, Rhacodactylus ciliatus, and Atheris hispida. Just some examples of scale diversity in extant reptiles.

    What of the other major implication for basal “fuzz” in dinosaurs. Does this clinch the “dinosaurs were warm-blooded” argument?

    Despite the wishes of some of the more vocal dino enthusiasts on the internet, this does not signal the death knell for bradymetabolic dinosaurs.

    Both mammals and birds have an insulatory coat. From what we can gather, the role (or one of the roles) of this coat is to keep body temperature fairly constant. Therefore it is tempting to look at both feathery birds and fuzzy mammals and assume that a high metabolic rate (or automatic endothermy) must be associated with insulation.

    However mammals and birds only represent two instances of insulation. As any statistician will tell you, two points make a line, not a pattern. What would help would be if there was at least one other group of critters that had insulation.

    Well, it turns out that there are: Arthropods.

    From the “woolly crustaceans” of the deep ocean, to bees and tarantulas, “hair” is fairly common among arthropods. This hair (deemed: setae) has a different embryological origin from mammalian hair, so it cannot be considered homologous.

    So there is a third outgroup that shows filamentous coverings. Is it also associated with a constant body temperature and automatic endothermy?

    Well no.

    In many species, the setae appear to function primarily as touch sensors; whether it be for the legs of a fly, or the body of a orb weaving spider. Still there are a few (moths, bees, certain beetles), that do use their hair for insulation. These animals are “functional endotherms.” That is to say that they use muscular power to generate heat internally. The difference between them and the classic “warm-blooded” mammals and birds, is that heat is generated solely by “skeletal” muscle, and can be turned off.

    That insulation should not automatically equal “warm-bloodedness” has been recognized before. Previous authors (Schmidt-Nielson 1975, Withers 1992) have pointed out that while insulation does seem to lead to homeothermy, it does not associate so well with a high metabolism.

    So then could we say that Tianyulong and the “feathered” theropods were using their insulation to maintain a stable body temperature.

    Maybe not.

    If one is to use filaments for insulation, then they need to be spaced close enough that they will trap a layer of air between them and the skin. In mammals and birds this results in a notably fuzzy coat. Yet, sometimes this look can be deceiving. Consider polar bears. Despite their hairy look, polar bear fur offers very little insulatory benefits (Lavers 2000). The main use for the fur, seems to be to hide the black, sun absorbing skin underneath. Polar bears stay warm by maintaining a large layer of fat between their skin and the body core. The wide spacing of the hairs also allows them to quickly drain water from the body when the bears emerge from their icy swims (where insulation benefits of fur equal exactly zero). So if one is going to keep warm by being fuzzy, then that fuzz better be pretty thick.

    For the protofeathered/feathered maniraptorans, the fuzz count appears high enough to allow for functional (possibly passive) homeothermy. This is not the case with Tianyulong. The filaments in T.confiusci are spaced too far apart to allow for much in the way of heat retention. These filaments must have been used for something else. Possibly as a means of defense by keeping attention focused on the tail, or (if backed by erector muscles) by making the animal look substantially bigger and more intimidating to a potential predator. They may have been used in a more passive sense by conferring camouflage to their owner. All are possible alternative uses for these filaments (ignoring, for now, the likelihood of these filaments being used for multiple purposes).

    Besides all that, the Mesozoic is well known for being a time of high global temperatures. This doesn’t lend well to the assumption that filaments were evolved to keep their owners warm.

    Now if they evolved to help keep heat out…

    ~ Jura

    References

    Anderson, B.G., Barrick, R.E., Droser, M.L., Stadtman, K.L. 1999. Hadrosaur Skin Impressions fom the Upper Cretaceous Neslen Formation, Book Cliffs, Utah: Morphology and Paleoenvironmental Context. Vertebrate Paleontology in Utah. David Gillette (ed). Utah Geo Survery. ISBN: 1557916349, 9781557916341 pps: 295-302.
    Alibardi, L. and Thompson, M. 2001. Fine Structure of the Developing Epidermis in the Embryo of the American Alligator (Alligator mississippiensis, Crocodilia, Reptilia). J. Anat. Vol.198:265-282.
    Brown, B. 1917. A Complete Skeleton of the Horned Dinosaur Monoclonius and Description of a Second Skeleton Showing Skin Impressions. Bul AMNH. Vol.37(10):281-306.
    Coria, R.A. and Chiappe, L.M. 2007. Embryonic skin from Late Cretaceous Sauropods (Dinosauria) of Auca Mahuevo, Patagonia, Argentina. J. Paleo. Vol.81(6):1528-1532.
    Currie, P.J., Badamgarav, D., Koppelhu, E.B. 2003. The First Late Cretaceous Footprints from the Nemegt Locality in the Gobi of Mongolia. Ichnos. Vol.10:1-12.
    Czerkas, S. A., and S. J. Czerkas. 1997. The integument and life restoration of Carnotaurus. In D. L. Wolberg and G. D. Rosenberg (eds.), Dinofest International, Proceedings of the Symposium at Arizona State University, pp. 155?158. Philadelphia Academy of Natural Sciences, Philadelphia.
    Gregg, K., Wilton, S.D., Parry, D.A., and Rogers, G.E. 1984. A Comparison of Genomic Coding Sequences for Feather and Scale Keratins: Structural and Evolutionary Implications. Embo J. Vol.3(1): 175-178.
    Lavers, C. 2000. Why Elephants Have Big Ears: Understanding Pattersn of Life on Earth. St. Martins Press. NY. ISBN: 0312269022. pg 104.
    Parks, WA. (1924). Dyoplosaurus acutosquameus, a new genus and species of armoured dinosaur; and notes on a skeleton of Prosaurolophus maximus. University of Toronto Studies, Geological Series 18, pp. 1-35
    Pinegar, R.T., Loewen, M.A., Cloward, K.C., Hunter, R.J., Weege, C.J. 2003. A Juvenile Allosaur with Preserved Integument from the Basal Morrison Formation of Central Wyoming. JVP. vol.23(3):87A-88A.
    Sawyer, R.H. and Knapp, L.W. 2003. Avian skin Development and the Evolutionary Origins of Feathers. J. Exp. Zool. (Mol Dev Evol). Vol.298B:57-72.
    Schmidt-Nielson, K. 1975. Animal Physiology Adaptation and Environment. Cambridge University Press. Cambridge. ISBN: 0521570980, 978-0521570985. pg 669.
    Shine, R., 2005. Life-History Evolution in Reptiles. Annu. Rev. Ecol. Evol. Syst. Vol.36:23-46.
    Sternberg, C.H., 1909, A new Trachodon from the Laramie beds of Converse County, Wyoming. Science, v. 29, p. 753-754.
    Sternberg, CM., 1925, Integument of Chasmosaurus belli: Canadian Field Naturalist, v.39, p. 108-110.
    Withers, P.C. 1992. Comparative Animal Physiology. Brooks Cole. ISBN: 0030128471, 978-0030128479. pg 949.